Level estimation in nonlinearly distorted hidden Markov models using statistical extremes
نویسندگان
چکیده
Estimation of the state levels of a discrete-time, finite-state Markov chain hidden in coloured Gaussian noise and subjected to unknown nonlinear distortion is considered. If the nonlinear distortion has almost linear behaviour for small values near zero or for large values, extreme value theory can be applied to the level estimation problem, resulting in simple estimation algorithms. The extreme value-based level estimator is computationally inexpensive and has potential applications in data measurement systems where inaccuracies are introduced by dead zones or saturation in sensor characteristics. The effectiveness of the new level estimator is demonstrated by way of computer simulations.
منابع مشابه
Climate change scenarios generated by using GCM outputs and statistical downscaling in an arid region
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملAn Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set
Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملStatistical analysis of neural data : Continuous - space models ( First 2 / 3 )
1 Autoregressive models and Kalman filter models are Gaussian Markov and hidden Markov models, respectively 3 1.1 Example: voltage smoothing and interpolation; inferring biophysical parameters 5 1.2 We may perform inference in the Kalman model either via the forward-backwards recursion or by direct optimization methods . . . . . . . . . . . . . . . . . . . 9 1.3 The Kalman model is only identif...
متن کامل